2024 Neuro Inspired Computational Elements Conference (NICE) | 979-8-3503-9058-2/24/$31.00 ©2024 IEEE | DOI: 10.1109/NICE61972.2024.10549632

Biological Dynamics Enabling Training of Binary
Recurrent Networks

G. William Chapman, Corinne Teeter, Sapan Agarwal, T. Patrick Xiao, Park Hays, Srideep S. Musuvathy
Sandia National Laboratories
Albuquerque, New Mexico
Email: {gwchapm*, cmteete, sagarwa, txiao, phays, smusuva}@sandia.gov

Abstract—Neuromorphic computing systems have been used
for the processing of spatiotemporal video-like data, requiring the
use of recurrent networks, while attempting to minimize power
consumption by utilizing binary activation functions. However,
previous work on binary activation networks has primarily
focused on training of feed-forward networks due to difficulties
in training recurrent binary networks. Spiking neural networks
however have been successfully trained in recurrent networks,
despite the fact that they operate with binary communication.
Intrigued by this discrepancy, we design a generalized leaky-
integrate and fire neuron which can be deconstructed to a binary
activation unit, allowing us to investigate the minimal dynamics
from a spiking network that are required to allow binary
activation networks to be trained. We find that a subthreshold
integrative membrane potential is the only requirement to allow
an otherwise standard binary activation unit to be trained in a
recurrent network. Investigating further the trained networks,
we find that these stateful binary networks learn a soft reset
mechanism by recurrent weights, allowing them to approximate
the explicit reset of spiking networks.

Index Terms—Recurrent Networks, Spiking Neural Networks,
Neuromorphic Computing, Video Processing

I. INTRODUCTION

Many machine learning tasks involve stimuli which evolve
in both space and time, such as tracking objects in a video
or identifying a scene based on the interaction of actors. Such
tasks can sometimes be processed in a sequential spatial-then-
temporal approach, by extracting large scale spatial feature
information and evaluating how those features evolve through
time. However, in other cases the temporal information may
be of higher importance and finer spatial scale. For example,
when identifying an object from a distance, integrating tem-
poral information may allow one to detect changes when the
spatial resolution was too low to otherwise identify an object
[1]. In such cases recurrent processing must occur early in the
hierarchy, in order to avoid smoothing small temporal signals
before they can be extracted. In neural systems, recurrent
processing is ubiquitous as early in the visual processing as
the retina [2], including hierarchically recurrent processing in
which predictions are incorporated into lower-level circuits,
possibly increasing sensitivity to small signals [3], [4]. Here
we investigate a particular case for recurrent spatiotemporal
processing at early layers of a machine learning model, taking
inspiration from biological systems in order to train on binary
activations, similar to spiking neurons.

Hardware Constraints: While several use cases may
seek to utilize recurrent neural networks for processing of
information near sensors, such hardware is often restricted
by size, weight, and power (SWaP) constraints. Binarized
activation neural networks (BANNs) can minimize the pre-
cision of analog-to-digital converters, in the case of physical
accelerators such as memristor crossbars [5], or otherwise
minimizing the number of binary operations required for linear
arithmetic. However, many use cases have temporal dynamics,
which requires the use of recurrent neural networks, which
requires the storage of state and output over time steps. Storing
these stateful variables and moving them between memory
and compute regions, is energetically expensive. We therefore
require a network which incorporates stateful recurrence, but
which minimizes the amount of state that must be retained.
This can be achieved either by decreasing the number of
layers with statefulness, or by decreasing the amount of state
stored by each layer. Previous research has shown that for
scenarios such as object tracking or video classification, the
best performing networks require recurrence at the earliest,
largest, layers of processing [6]. Therefore, we seek a method
for optimizing recurrent neural networks in which the size of
state is minimized by utilizing a single bit activation function.

Training Binary Networks: In recent years training bi-
nary, or otherwise heavily discretized neural networks, has
been largely achieved by the use of surrogate gradient descent,
which approximates the discontinuous activation functions as
a continuous functions in the backwards pass [7], [8]. Such
approaches can be highly effective, especially when the acti-
vation surrogate function closely approximates the activation
function. Other approaches have attempted to use activations
with tuneable sharpness, such that training starts on a fairly
smooth activation, which becomes increasingly close to the
binary activation over the course of training [9]. However,
neither of these approaches have been successful in training
recurrent layers, likely due to feedback activations pushing the
units away from the regime where the surrogate functions are
valid approximations [10]. However, previous work has been
successful in training recurrent spiking networks [11], which
we utilize in this work to train a binary activation network.
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II. SPATIOTEMPORAL NETWORKS FOR OBJECT TRACKING
A. Task

We introduce a small object tracking (SOT) task, designed
specifically to test the capability of our networks to detect fine-
grained spatiotemporal information. We consider a synthetic
task in which a remote camera moves slowly over a large field
of view, and on which we superimpose a single target object
moving according to known dynamics. Background images are
800x800 pixels, taken from the DIOR dataset [12] consisting
of approximately 12,000 images of diverse structure, which
are converted to grey-scale. To model sensor movement we
crop to a 30x30 sample of the background image and slowly
move the center of that window by modeling the sensor
velocity as a time-varying Ornstein—Uhlenbeck (OU) process,
and interpolate with background translation by cubic splines.
Sensor noise is modeled by adding independent white noise
on at each pixel, with variance proportional to the intensity of
that pixel. Finally, object locations are generated as bounded
ballistic trajectories that experience elastic collisions with the
boundary of the frame. After adding the noise and target values
to the background image, the resulting pixel values are clipped
between zero and one. The resulting task is a time-varying
input of images, and the target output is the sub-pixel location
of the object, with performance measured as mean-squared-
error (MSE).

For the results presented here, we normalize the background
image to a maximum intensity of 0.5, and the target intensity
is 0.25 giving a target-to-background ratio of 0.5. The propor-
tional noise was set to a standard deviation of one-quarter of
the pixel intensity, further decreasing the signal to noise ratio
and introducing clutter in the temporal difference of images.
The mean object velocity is equal to one-third of a pixel per
frame, resulting in the object not moving between pixels on
the majority of frames, and the trial lasted for 100 frames. All
results are presented on a training set of 50,000 trials and a
separate validation set of equal size.

B. Model Architecture & Training

As the SOT task is spatiotemporal in nature, we utilize a
combination of dense, convolutional, recurrent, and recurrent-
convolutional [6] connections, with configurations described
below. On each trial images from the tracking task are pre-
sented one at at time to an early convolutional layer, and the
readout layer consists of two units which are interpreted as
the position of the moving object within the field of view. All
models are fit to minimize the mean-square error (MSE) of the
estimated location on each frame, utilizing backpropagation
(through time, as appropriate) and the standard ADAM [13]
optimizer. For every network configuration we ran 5 separately
initialized models and show their average performance over
the course of 200 epochs.

All models begin with a two layer convolutional network
with 8 and 16 channels, with the exception of the “shallow”
network, which consists of only a single 8 channel connection.
In the case of convolutional-recurrent layers (CRNN), these
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Fig. 1. Process for generation of the small object tracking dataset. A: Back-
ground images are taken from the DIOR dataset and turned into greyscale,
then a small random drift is added to the overall location. The target object
location is simulated as ballistic motion, and a small intensity signal is added
to the corresponding pixel. Finally, sensor noise is modeled as proportionally
normal and added to each pixel in an independent manner on each frame. B:
Ilustrating 5 frames sampled equally from a single trial, with object locations
circled in red. On some frames (first and second from the left) the object
is clearly visible, while on other frames (3-5 here) it is obscured by the
background and noise signal.

convolutional channels had an additional set of weights which
map each channel’s output as an additional input at the
next point in time. Convolutional layers utilized a rectified
linear activation, while CRNN layers utilized the hyperbolic
tangent. Spatial processing was then followed by two readout
layers with 100 and 2 units, implemented either as a rectified
linear layer or as a gated-recurrent unit. In order to verify
that there was sufficient visual clutter in the stimulus, we
also implemented a difference convolutional network (DCNN)
which received the temporal change in frames, rather than the
raw value.

C. Early Recurrence is Necessary

CNN-RNN
Spatial— Temporal

Frame]—HO—Position Frame—.—‘g—‘g—‘ — Position

Fig. 2. Left: Sequential CNN-RNN approach, in which spatial information is
extracted and reduced, before being processed by a small temporal network.
Right: A Convolutional recurrent neural network (CRNN), in which high
fidelity spatial and temporal information is processed at every layer.

CRNN
Spatiotemporal

Table I and figure 3 summarize the performance of the
various network configurations. Overall, we find the purely
spatial (CNN, DCNN) networks fail to learn past the first few
epochs, while spatial-then-temporal networks (CNN-RNN,
Figure 2 Left) overfit to specific video-sequences, but fail to
generalize to novel samples. In contrast, all networks with
a convolutional recurrent layer (CRNN, Figure 2 Right) at
the lowest layers of the network perform accurate sub-pixel
tracking on both training and validation sets. The single-layer
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CRNN ('CRNN-Shallow’) performed only marginally worse
than the deeper models, while the model with a CNN layer
before the CRNN (CNN-CRNN”) had an error three-times as
high as the shallow network. These results show that for the

SOT task a small degree of spatiotemporal processing may be
necessary, but that it must occur early in the network.

Network Convolutions Readout | Validation Loss
CNN 2 Conv2D Linear .093
DCNN 2 Conv2D Linear .290
CNN-RNN 2 Conv2D GRU .091
CRNN 2 CRNN Linear .007
CRNN-Shallow 1 CRNN Linear .006
CNN-CRNN Conv2D, CRNN Linear 018
CRNN-CNN CRNN, Conv2D Linear 004

TABLE I

SOT PERFORMANCE ACROSS ALL NETWORK ARCHITECTURES. ONLY
NETWORKS WITH CRNN LAYERS PERFORM SUB-PIXEL LOCALIZATION
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Fig. 3. Continuous-valued network performance over the course of training,
on both training data (dashed) and validation data (solid). Spatial-then-
temporal models overfit on noise, without generalization to test datasets.
Spatiotemporal models generalize to testing data, and perform sub-pixel
localization.

III. BINARY RECURRENT NETWORK TRAINING

The previous section demonstrates that early recurrence is
necessary for accurate tracking, and that the convolutional-
recurrent layer is sufficient to extract the necessary spatiotem-
poral changes to track the object. While previous results
show that binary activation layers can drastically decrease
these energy costs [5], previous work has not shown that
binary-activation units can be trained in recurrent layers.
In contrast, biological neurons communicate utilizing binary
spikes in highly recurrent systems, and previous work has
shown success in training recurrent spiking networks. We
therefore sought to test whether binary activation units or
spiking neurons can be trained in the convolutional-recurrent
networks from above. Aside from the activation functions and
surrogate gradients outlined below, these networks have the
same architecture and training methods as for the continuous
case.

A. Binary Activation Neural Networks

These models replace the continuous activation function of
the ANN models with a binary activation function:

1 ifz>0

(C] —
@=3_1 ife<o

1
Which is notably non-differentiable at the threshold and there-
fore can not be optimized with standard gradient methods.
Instead, as with previous approaches during the backward

phase the surrogate gradient function is defined as the straight-
through estimator (STE) [8]:

A xT

O(x) =

if |[z] <1

2
if 2] > 1 .

sign(zx)
Which is continuous within [-1, 1], and the bounding term pre-
vents weights from adjusting when the feed-forward variable is
far from the activation threshold. Optimization then continued
as normal, except that parameters were updated based on the
surrogate gradient rather than the true gradient of the forward
activation function.
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Fig. 4. Activation functions (solid) and surrogate gradients (dashed) for
training binary activation networks. (Blue) Spiking neural networks elicit an
activation when the state crosses 1, and utilize the derivative of a sigmoid for
the surrogate. (Red) Binary networks follow the sign activation and a piece-
wise linear straight-through estimator as the surrogate activation.

B. Spiking Networks

Spiking neural networks (SNN) were modeled using Norse
[14], a simple simulator built on top of PyTorch utilizing
simple forward Euler mechanisms. We utilize leaky-integrate
and fire (LIF) neurons, which have previously been shown to
successfully train in recurrent networks [15]. Individual units
followed the dynamics:

dvr,(t)

Wy = e+ 2 WaSa()

Sp(t) = (vr(t) 2 1)

Where vy, is the sub-threshold voltage, A is the set of all
layers projecting to the layer L, W, 1, is the weights from layer
n to L, S is the binary activation, and 7, is the time constants
of the sub-threshold voltage.

3)
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With an explicit reset mechanism:

0 if Sy.(t)

on(t+1) = v (t) + dor (t)

“4)

otherwise

The spiking units utilize the ”SuperSpike” [16] surrogate
gradient, which operates on the subthreshold membrane po-
tential and has the form:

- 1

S(V) = T4 3 (V=1 (%)

C. Spiking Enables Binary Recurrent Network Training
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Fig. 5. Performance on binary-activation networks during training. Binary
convolutional networks (BCNN) fail to converge, similar to the real-valued
CNN. Binary activation recurrent networks (BCRNN) do not train, in contrast
to their real-valued counterparts. However, LIF-based spiking convolutional
recurrent networks (SCRNN) are able to perform the task at sub-pixel
accuracy.

As with the continuous value networks, the binary-activation
convolutional network is unable to perform the SOT task
(Figure 5, blue). As expected from the lack of previous
literature, the recurrent binary activation network is also unable
to converge. However, the LIF-based units are able to converge
and perform sub-pixel tracking.

IV. GENERALIZED INTEGRATE AND FIRE UNITS

There are several differences between the binary activation
network and the LIF-based network presented above, which
obfuscate the exact mechanism responsible for the LIF-based
network training where the binary-activation units do not.
Firstly, the LIF-units activate only at a single point, while
the binary units have a positive or negative output for all
input values. Secondly, the integrator term in the LIF acts as
both a low-pass filter smoothing the membrane potential over
time. The integrator term also introduces an explicit temporal
dynamic to the LIF unit, which the binary activation lacks.
Finally, the LIF units contain an explicit reset mechanism.

In order to more fully address which of these aspects is
necessary for training of recurrent binary activation networks,

we next introduce a slightly expanded generalized leaky-
integrate and fire (GLIF) model with the dynamics:

dur,(t
W = o) g ) + - WasSal0
©
T dugt(t) = —ur(t) + Sr(t)

Sp(t) = (vi(t) 2 1)
With an explicit reset mechanism:

0 if S(t)and Reset
’UL(t) + d?)L(t)

This modification introduces an afterhyperpolarization (AHP)
term u(t), and tuneable coupling parameters g, and g,, linking
the membrane dynamics to the leak and AHP terms, respec-
tively. The introduction of the AHP term serves two functions.
Firstly, it provides a mechanism for a soft-refractory period
that the LIF units used in the previous section lack. Secondly,
it provides a second route for the previous activity of the unit to
propagate through time, such that even if the integrator aspect
of the LIF is removed, the AHP from a previous timestep can
linger and prevent the unit from becoming active for a short
period. Figure 6 illustrates this expanded model, highlighting
the multiple feedback mechanisms that may be present.

v (t+1) = )

otherwise

D Leak ;
InEut +1 . S
—
du
-1 —!

Fig. 6. Block diagram of the components of the spiking network units. By
removing various components such as the leak and hyperpolarization term
the units can become increasingly simple, and approach the binary-activation
units of equation 1, while the full set of blocks implements the generalized
model.

Given the GLIF model, we can selectively remove the
AHP, integrative, leak, and explicit reset mechanism of the
model separately, as highlighted by the variations in table
II. A notable difference between the binary and the spiking
configurations is that the binary configurations do not have an
explicit reset after reaching activation threshold (equation 7).

A. Additional tasks

We next evaluate the variations of the GLIF model when
configured into the CRNN network from section II. In ad-
dition to this motivating example, which explicitly requires
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Model Abbreviation | gr | gu | Reset
Hyperpolarizing LIF HLIF 1 1 True
Hyperpolarizing Integrate and Fire | HIAF 0 1 True
Leaky Integrate and Fire LIF 1 0 True
Integrate and Fire IAF 0 0 True
Binary Activation Leaky Integrate | BLI 1 0 False
Binary Activation Integrate BI 0 0 False
Hyperpolarizing Binary Activation | HBA 0 1 False
Binary Activation (equation 1) BA 0 0 False
TABLE II

ALL VARIATIONS OF THE GENERALIZED LINEAR INTEGRATE AND FIRE,
ORDERED FROM MOST COMPLETE TO SIMPLEST.

spatiotemporal operations, we test the degree to which the
GLIF mechanisms enable or hinder training in other tasks
which are more commonly reported. We utilize the MNIST
digit dataset [17] to test classification of non-time varying
stimuli. This task utilizes 28x28 pixel inputs normalized 0-
1, and the output target is a one-hot encoding of labels 0-9,
and utilizes the cross-entropy loss function. During training the
sample image is presented for 20 sequential time steps and the
activity at the readout layer on the last time step is taken to
be the output of the network. The MNIST network consisted
of two 2-dimensional recurrent-convolutional channels with 8
and 16 channels, each of which is a 3x3 kernel, followed by
two readout layers with 100 and 10 units.

To test classification of temporal stimuli, we utilize the free
spoken-digit dataset (FSDD) [18], and preprocess the audio
files into spectrograms that are 64 time-bins long and 64
frequency bands spanning 0-4Khz. During training the signal
for all 64 frequency bands are presented at each time step,
and the output layer activity at the final time step is taken
as the network output for cross-entropy loss. FSDD networks
were the same layout as the MNIST, except that they utilized
1-dimensional convolutions.

B. Binary Recurrent Networks Require State

Unit Type MNIST | FSDD | SOT (MSE)
Real (CNN-RNN) | 98.9 904 | 091
Real 99.0 982 | .007
HLIF 9322 956 | 015
HIAF 98.4 9243 | 018
LIF 98.5 93.1 | 017
IAF 98.7 927 | 016
BLI 98.7 972 | 011
BI 98.5 932 | 013
HBA 98.5 31.8 | 310
BA 97.2 486 | 123
TABLE 11T

PERFORMANCE OF CONVOLUTIONAL RECURRENT ARCHITECTURES WITH
VARIOUS UNITS FOR ALL THREE TASKS. BEST BINARY ACTIVATION
RESULTS ARE BOLD FOR EACH TASK.

Table III summarizes the performance of the GLIF vari-
ations described above, as well as two real-valued baseline
models. For all tasks, the binary leaky-integrator performs
better than the other models, with the binary-integrator and
firing models achieving similar performance. The two models
which lack the integrative term (the hyperpolarizing binary,
and binary activation) perform well on the MNIST task,

but fail on both the spoke-digits and small object-tracking
tasks. This suggests that the pre-activation integration of
inputs is the primary mechanism responsible for successful
backpropagation through time, even when the post-activation
hyperpolarization term is available. In models which were
unable to properly utilize recurrent connections (HBA, BA),
when trained on the MNIST task, those connection weights
were minimized (mean-squared amplitude 0.04, compared to
0.78 for BLI), and do not impeded the feedforward pathway
from being optimized.

C. Learned Soft-Reset

One notable trend result above is that the reset mechanism
does not appear to be necessary for training of these networks,
whereas previous work has suggested that reset mechanisms,
and particularly the temporal sparsity that they provide, are an
essential aspect of spiking neural networks [9]. We therefore
calculated the average activity of the models reported in table
II, calculated as the proportion of units with an activation on
each timestep, and found that the networks had highly similar
values (10.7% active for LIF, compared to 11.1% for BLI).

Intrigued by this apparent discrepancy, we investigated the
learned recurrent weights in the LIF And BLI networks (see
Figure 7). The forward and recurrent weight distributions
were not significantly different between the two models, as
determined by a Wilcoxon rank-sum test. However, when
limited only to the autapses, there is a significant difference
between the two models, with LIF autapses being exclusively
positive and BLI autapses being exclusively negative. The
positive autapses in the LIF model act as a self-excitation,
partially restoring the membrane potential following a spike,
while the negative autapses of the BLI act as self-inhibition,
resulting in a soft-reset once the membrane potential reaches
threshold.

LIF Weights BLI Weights
o I o™ (" A= L[N
(L AR LS =]l M T A Ed R
B ERLAN B E1™ =l ] [
L e (ol ] ] e g
] o T[] <"l
e (=] A R[] Al = ] L
FIRENETEE (==
L1 [0 e N =SS, L BN (I 1l
Falall" L Ll A= o LT Ll

Fig. 7. Learned weights for the feedforward (top) and recurrent (below black
line) convolutional kernels of the LIF and BLI networks after training on
the SOT task. Both sets of self-recurrent weights (diagonal blocks) contain a
consistent self-excitation (LIF) and self-inhibition (BLI) weight.

V. DISCUSSION

Motivated by the capability of nervous systems to detect
small objects in low signal-to-noise environments, we inves-
tigated the capabilities of recurrent convolutional networks.
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By training on the small object tracking task, we find that
spatiotemporal processing must occur at the earliest layers
of a network in order to accurately detect small changes,
consistent with the high degree of recurrence in biological
systems. Then, by generalizing the leaky-integrate and fire
neuron we are able to show that various forms of binary-
activation units can be trained in recurrent networks. The most
essential component appears to be the presence of a sub-
threshold integrator, while other mechanisms such as explicit
post-spike resets and leakage are not necessary.

Model Complexity: We note that in the current work
we utilize one of the simplest models of spiking neurons,
whereas additional mechanisms are required to fit phenomeno-
logical findings from experimental data [19]. While the binary-
integrator simplification was sufficient to enable training in
this supervised regression task, it is possible that additional
mechanisms such as bursting, subthreshold oscillations, and
nonlinear dendritic dynamics are necessary for a host of other
phenomenon in neural systems, such as attention [20], working
memory [21] and continual or unsupervised learning [22],
[23]. The current results should be interpreted only as the
minimum complexity of units required for supervised surro-
gate training, and not a dismissal of other neural properties
which may have other use-cases.

Hardware Co-Design: A notable aspect of the current
findings is that the subthreshold membrane potential appears
to be the critical component for enabling binary activation
recurrent networks. This has implications for co-design of
neuromorphic hardware, which often focuses on feedforward
networks without state [24], or implement recurrence in a
digital component [25]. However, for hardware which may
need to process spatiotemporal data, it is worth considering
the hardware constraint tradeoffs with the need to implement
recurrent layers. As mentioned above, the current results
demonstrate only the base-minimum for spatiotemporal data,
whereas other tasks may require additional dynamics. For
example, due to device variability it may be desirable to
train on-device instead of with surrogate gradient descent [26],
and most biological learning rules require additional dynamics
such as bursting [22] or long-term activity traces [27].
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